métal du groupe IIa (Be, Mg ou Ca), et B, un métalloïde de la colonne V (N ou P). Ces composés possèdent une structure anti- α -Mn₂O₃ dont le paramètre varie avec la grosseur de chacun des types d'atome en présence, la distorsion de la structure étant principalement due à la différence d'électroaffinité entre A et B.

Références

- ANTROPOFF, A. VON & FALK, E. (1930). Z. anorg. allgem. Chem. 187, 405.
- AUBRY, J. & STREIFF, R. (1966). C.r. Acad. Sci. Paris, 263, 931.
- BRADLEY, A. J. & JAY, A. H. (1932). Proc. Phys. Soc. 44, 563.

COHEN, M. U. (1935). Rev. Sci. Instrum. 6, 68.

COHEN, M. U. (1936). Rev. Sci. Instrum. 7, 155.

DUTOIT, P. & SCHNORFF, A. (1928). C.r. Acad. Sci. Paris, 188, 300.

- FRANCK, H. H., BREDIG, M. A. & HOFFMANN, G. (1933). Naturwissenschaften, 21, 330.
- HARKER, D. (1948). Amer. Min. 33, 764.
- HARTMANN, H. & FRÖHLICH, H. I. (1934). Z. anorg. allgem. Chem. 218, 190.
- HESS, J. B. (1951). Acta Cryst. 4, 209.
- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- JUZA, R. (1945). Die Chemie, 58, 25.
- KEVE, E. T. & SKAPSKI, A. C. (1966). Chem. Communications, p. 298.
- LAURENT, Y., DAVID, J. & LANG, J. (1964). C.r. Acad. Sci. Paris, 259, 1132.
- MOISSAN, H. (1898). C.r. Acad. Sci. Paris, 127, 497.
- MOISSAN, H. (1899). Ann. Chim. Phys. 18, no.7, 318.
- PAULING, L. & SHAPPEL, M. D. (1930). Z. Kristallogr. 75, 128.
- STACKELBERG, M. VON & PAULUS, R. (1933). Z. Phys. Chem. 22, 305.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151.

Acta Cryst. (1968). B24, 499

The Crystal Structure of Monomethylammonium Perchlorate*

BY P.F. ZANAZZI

Istituto di Mineralogia dell'Università di Perugia, Italy

(Received 5 June 1967)

The crystal structure of monomethylammonium perchlorate, $CH_3NH_3^+ClO_4^-$ has been determined by a three-dimensional X-ray analysis. The space group is $P2_1/n$ and the cell dimensions are: $a_0 = 10.59$, $b_0 = 7.67$, $c_0 = 12.87$ Å, $\beta = 101^{\circ}26'$; there are two molecules per asymmetric unit. The structure has been solved by the heavy-atom technique and refined by least-squares methods. The average Cl–O and N–C bond lengths are 1.43 and 1.52 Å respectively. Each of the nitrogen atoms has six oxygen neighbours with distances varying from 2.86 to 3.14 Å probably forming bifurcated hydrogen bonds. Each of the two independent $CH_3NH_3^+$ cations in the structure is surrounded by twelve oxygen atoms with distances less than 3.5 Å.

Introduction

Little information is available in the literature on the crystal structure of monomethylammonium salts. Only two of these compounds, namely the tetragonal monomethylammonium chloride (Hughes & Lipscomb, 1946) and the monomethylammonium aluminum sulphate alum in the room temperature cubic phase (Okaya, Ahmed, Pepinsky & Vand, 1957) and in the low temperature orthorhombic phase (Fletcher & Steeple, 1964), have been examined by X-ray methods during the last twenty years.

In the chloride, the C-N axis of the cations lies on the fourfold symmetry axis; since this is physically impossible with normal valences, the cations must exhibit either internal rotation or orientation disorder in the crystal. In cubic monomethylammonium alum, the $CH_3NH_3^+$ ions are statistically arranged around the cube body diagonal. Therefore in both structures, the exact coordination around the methylammonium ion is not considered, the only determination being that in orthorhombic 'alum'.

The present crystal structure determination on monomethylammonium perchlorate was undertaken with the purpose of contributing towards a better knowledge of the crystallochemistry of the $CH_3NH_3^+$ ion.

Experimental

Crystals of monomethylammonium perchlorate, prepared by neutralization of an alcoholic solution of methylamine with an aqueous solution of perchloric acid, were kindly supplied by Dr Marzocchi of the

^{*} This investigation was performed at the Centro di Cristallografia del C.N.R., Istituto di Mineralogia dell'Università, Firenze, Italy, with a research grant of the Italian Ministero della Pubblica Istruzione.

Laboratorio di Spettroscopia Molecolare of Florence University. The crystals, grown from alcoholic solution, are colourless needles elongated in the [010] direction, stable in air and in the X-ray beam.

The cell parameters determined from Weissenberg and rotation photographs were refined by a leastsquares method, employing data from a powder diffractogram. The results are:

$$a_0 = 10.59 \pm 0.01, \quad b_0 = 7.67 \pm 0.01, \\ c_0 = 12.87 \pm 0.01 \text{ Å}, \quad \beta = 101^{\circ}26' \pm 15'$$

From the systematically absent reflexions the space group was determined as $P2_1/n$ (C_{2h}^5). For eight unit CH₃NH₃⁺ClO₄⁻ in the cell the calculated density is $D_x = 1.71$ g.cm⁻³, in agreement with the observed value of 1.69 g.cm⁻³ measured by flotation in a mixture of methylene iodide and carbon tetrachloride. The linear absorption coefficient for the Cu K α wave-length is $\mu = 60.3$ cm⁻¹.

For the collection of the intensities a crystal of prismatic shape with a cross section of $0.13 \times 0.06 \text{ mm}^2$ was used. The crystal was rotated about the b axis and equi-inclination Weissenberg photographs from h0l to *h*4*l* layers were taken with the use of Ni-filtered Cu $K\alpha$ radiation and the multiple film technique. In each layer, reflexions at high Bragg angles were too weak to be measured and were neglected. Of the 885 independent reflexions examined, 381 were in the observable range. Unidimensionally integrated intensities were measured with a microdensitometer and were roughly brought to a common relative scale on the basis of the exposure time of different layers. On account of the small cross section of the specimen, a sufficiently accurate correction was made for absorption by assuming the crystal to be a cylinder with a radius of 0.05 mm. Phillips's (1954) corrections for spot elongation and Lorentzpolarization factors to obtain the F^{2} 's were applied.

Determination and refinement of the structure

A three-dimensional Patterson synthesis was first calculated. The $(\frac{1}{2}, v, \frac{1}{2})$ Harker line showed only a relevant peak, and this allowed the assignment of the same y coordinate to the two independent chlorine atoms in the structure. The sets of x and z coordinates obtained from the $(u, \frac{1}{2}, w)$ Harker plane were then correctly correlated with the positions of the peaks due to the Cl(1)-Cl(2) vectors. The approximate coordinates of remaining non-hydrogen atoms were found from a threedimensional 'heavy-atom' Fourier synthesis calculated without the coefficients whose signs had a low probability of being correct. The atomic coordinates were improved by a second electron density map and the discrepancy index $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ for all the observed structure factors was at this stage 0.20.

A first refinement of the structure was performed with a least-squares program written by Albano, Bellon, Pompa & Scatturin (1963) for the IBM 1620 computer, using the block diagonal approximation and

individual isotropic thermal parameters. The weighting scheme suggested by Cruickshank (1961), $\sqrt{w}=1/(a+F_o)$ $+cF_{a}^{2}$ with $a\simeq 2F_{\min}$ and $a\simeq 2/F_{\max}$, was employed for the structure factors and the unobserved reflexions were not included in the calculations. After three cycles the R index dropped to 0.14. At this stage the full-matrix least-squares refinement was undertaken with the program of Busing & Levy, adapted for the IBM 7090 computer by Stewart (1964). For the observed planes a weighting scheme like that specified by Hughes (1941) was used, with 1/w=1 for reflexions with $F_o \leq 4F_{\min}$; $\gamma w = 4F_{\min}/F_o$ for $F_o > 4F_{\min}$. To provide additional data in this new series of calculations the 'accidentally absent' reflexions were included with a value just below the lowest intensity observed in that part of the spectrum. These reflexions were weighted as follows: $\sqrt{w} = 1$ for reflexions with $F_o > F_{\min}$, and v = 0 when $F_c \le F_{\min}$. Ten intense low order reflexions suspected to be affected by secondary extinction were excluded from the last cycle of refinement; they are marked by an E in Table 1. After one isotropic and three anisotropic cycles, each followed by a proper rescaling of F_o 's, the R index for all observed structure factors reached the final value of 0.09.

The observed and calculated structure factors are listed in Table 1. For the calculations the scattering factor values from the self-consistent model as listed in *International Tables for X-ray Crystallography* (1962) for Cl, O, N and C were used.

Discussion of the structure

The atomic coordinates and anisotropic temperature factors, as from the last cycle of refinement, are given in Tables 2 and 3 with their standard deviations, estimated by the least-squares program using the formula:

$$\sigma_j = \sqrt{\frac{a^{jj} \Sigma w \Delta F^2}{m-n}},$$

where *m* is the number of reflexions, *n* is the number of parameters and a^{jj} is the *jj* element of the inverse matrix.

The high values reached by the temperature factors should indicate that in the structure the thermal motion is relevant and this fact may be responsible for the weakness of the diffraction effects at high Bragg angles.

The atomic arrangement projected along the b axis is shown in Fig. 1. The lists of bond lengths and bond angles with their standard deviations are included in Tables 4 and 5.

Both ClO₄ tetrahedra in the structure are slightly distorted. The O–Cl–O angles range from 105 to 112°. The average Cl–O distances are 1.44 and 1.42 Å respectively for Cl(1) and Cl(2) tetrahedra. These values are in agreement with those reported in the literature for Cl–O distances in perchlorates (Truter, Cruickshank & Jeffrey, 1960; Truter, 1961; Coulter, Gantzel & McCullough, 1963).

Table 1. Observed and calculated structure factors (×10) for [CH₃NH₃]+ClO₄

Unobserved reflexions were assigned F_{obs} values corresponding to the minimum possible observable value and are designated with an asterisk. *E* signifies apparent extinction effect on F_{obs}^2 .

н	K L	FC FC	н	ĸι	FC FC	нкц	FC	FC	нх	ι	FC FC	н	ΚL	FC	FC	н	κ ι	FC	FC	н	κι	FC FC
0	0 <u>2</u>	79 -113 1282 -1395	10	0 -4	145* 168 111* 23	516	133* 117*	-23	1 2	-7	112* 64 107* -16	6	2 -11 -12	135* 225	-25 217	4	-3	223 352	239 -360	2	4 3	45* 2 293 306
	8	100 113 369 376		-8	356 276 136* -71	7 -7	140* 164	-120		-8	117* -168 122* -83 159 -148	7	2 0	123*	-55		-4	121*	-64		4	117 96 66 -63
1	12	145* -60	11	-12	94* 52 135* -29	-8	131*	47		-9 10	402 -420 136* 94		-2	129*	-49			153*	-2		-56	204 -209
•	-1	873E 968 69 77		-3	136* 149 134* 47	é-	268 138*	-261		-10	134* 1 277 -302		3	209 123	-193 46		., -,	160# 413	-38		-ĕ,	55* -29 65* -20
	-3	230 207 283 -283		-3	136* 149 134* 47	-10	142*	-25		-11	137* -30 132* 27		4	135*	-77 29		-8	336 154 *	335		-7	520 -495 68* 36
	1	535 -525 316 -373		-9	126* 39 112* 0 116 =104	6 1 0	113*	30		13	122* 58		-5	127	-108		-9	164*	-136		-8	138 127
	-/	313 279 846 955	12	0 4	206 212	-1	111*	64 -251	22	Ó	477 -572 89 106		-6,	174	202	5 3	- 0	126*	123		10	69* 45 70* 10
	-11	535 599 144* -6	_	-10	97* -121 69* -19	-2	140 124#	-122		-1	169 179 717698		-7 -8	134*	-15		-12	632 230	695 -118	3	4 0	135 126 230 239
	-13	134* -113 389 -432	0	1 1	37# 26 955E 1357 357 390	-3	116*	-18		-2	91 93		-9 -10	137	45 -98 -33		-2	126*	-238		oj	206 196 76 83
2	-15	106* -6 658£ 756		4	140 -131	-9	136*	-54			89* 74 236 242	8	2 0	133*	-111		-?	554	-507		-2	42* -28 51* -77
-	-2	1592E 1843 1572E -1739		6	109 -131 225 -241	6-6	339 125*	332 96		-5	192 188 315 314		-1 2	132* 136*	-96		-5	155* 341	39 -366		-3	129 -117 746 -712
	4	87* -41 181 -171		.9	120* 55 219 219	-7	143* 131*	-16		-ç,	108* 36 99* 47		-2	180	147 -32		4	380 145*	330 89		-4	239 -247 59 * -65
	-6	98* 36 229 240	1	1 0	368 491 141 177	-8	136*	-27		-7 8	652 669 247 -209		-7	137*	-29		-7	152*	20		<u>ارم</u>	91 57 57# 42
	-8 10	118* -40 337 360		-1 2	147 169 99 126	-9 10	141*	-63 -382		-8 9	118* -3 161 -140		-5	355 134*	305		-8 -9	183	-215		-7	67* -22 62* 54
	-10	138* 74 139* -112		-2	140 -189 72* 98	-10	245	-236		-9	234 -258 137* -196		-6	132*	-26	6 3	-10	165* 141*	-20		-8	260 240 94 -92
	-12	109* -89		->	659 -722 486 -570	/ / 1	569	-581		-11	136* -11 149 -150		-8	137*	-24		-1	199	206		-9	69* -34 68* 29
3	0 1	462 474 709 679		-5	188 180 87* -62	2 _2	131* 124*	-38		12 -12	129* 95 136* -61	9	2 -10 2 0	165 137#	172 -152		-23	140* 369	-377	4	4 -11	68* -51 108 -121
	-3	88* 39 645 -573		Å,	137 -156 216 256	-3	187	187	32	1	152 168 320 -310		-1	137*	132		-3	308 158*	317 -155		-1	206 188 246 256
		106# -108		-7	233 237	-4	127*	-97 190		2	362 -331 104 122		-2	137*	-127		-4	261	253		-2	196 205 143 -152
	-7	338 293 142* -176		-8 9	119* 91 423406	-5	130	107 83		-3	90* 96 370 365		-3	137*	-94		-6 -6	199 154#	-173		-3	151 129
	-9	130* 70 249 195		-9	129# 38 141* 9	-6	134*	-109		4	481 494		-4 -5	274 137*	271 -72		-7	164*	-246		-4	53* 12 80 66
	-11	519 -541 120 93		-11	209 254	-/	138*	-242 -95 82		-5	134 152		-7	136*	-15		-8	162	-13		-5	628 -680 150 -169
4	0 0 2	656 -660 287 -232	2	1 0	809E -1082 62* 15	-9	196 144*	-186 -6		-67	103* -13 123* 131	0	3 1 2	49*	-11	73	0	154#	-46		-7	69* -49 64* 77
	-2	239 -210 107* 101		-1	184 199 907E 1000	8 1 0	144*	-55 -179		-7	193 -180 192 -149		3	177	-193 -36		-1 2	153* 159*	21 58		-8	70* -8 68 65
	4 6 4	94* -52 217 218			80* -57 122 -105	-1	235	-250		-09	136* 114		67	390 141 710	-138		-2	152*	-58		-10	279 278 69* 52
	-8	226 -253		<u>ن</u> 	271 -255 177 177	-2	135* 264	-94 275		10 -10	137*30 134* 8		8 9	149*	-165			237	-231	7	- i	164 169 55* 37
	10 -10	271 293 167 166		-5	99* 39 377 -436	-3	135*	-76 -76		-!!	133* -166 315 340	1	3 0	164# 54#	-70 -55		-5	165 * 158*	-90 -83		_2 _2	286 300 98 108
	-12	127* 113 190 -171		-ç,	99* 88 162 -160	-4	538 144# 167	-13 171	4 2	-12	496 488 90 * -76		-1	55* 59* 741	75		-6	197	-243		-3	62* 37 197 -217
5	0 1	285 272		-7 8	144 139 240235	-6 -6	140* 141*	147 149		-i 2	291 302 396 -425		-23	167 92*	-190		-8	199	-187		4	59* 49 67* -48
	-3	112* 47 100* -103		-8	119* -59 137* 33	-7	135*	-111 -74		-2	412 401 101* 119		-3	86* 612	-79 682	8 3	0	162* 167*	42 139		~ś	91 -109 318 -342
	-5	126# 101 211 181		10	230 246	-9	143*	-1/1		-2	108* -8			118*	97		-1	284	314 59		-6	196197 70*21
	-7	321 303	3	1 0	133 119 341 353	9 1 0	143* 278	18 -296		-5	115# 52 314 315		6 -6	130# 162	75 -194		3	424	-425			74 -89
	-9 11	254 -230 130* -32		-1	763 -828 83* 6	-1	389 144#	418		-6-	276 233 108* -2		-7	141*	-0 38		4	163 * 163*	-11 -51	6	4 -10 4 0	182 165 62* -37
	-11	145* -47 135* 76		-2 3	90* -38	-2	143*	-141		-7	238 -253		-8	178	-194		-5	217 165*	-260		-1	249 268 242 222
0	-2	119* -125		4	98 * -60 88 63	يَّة 1	141 * 143*	10		~8 9	123* -105 137* -27		-9 -10	157* 163*	-25	93	-1	164*	-96		-2	61# 10 276 = 298
	4	130* -118 115* 16		-5	107* -1 236 -180	-5	232	280 -185		-9	134 -138 380 -307	2	3 0	230E 93	389 106		-3	164# 164#	-13		-3	230 250 68+ 36
	4	141= -36 124= 8 267 -214		-6 7	103* 79	-7	144#	-33		~11	138* 84		-1	108	~112		-5	232	-252		ş	63* 10 198215
	-8	137* 111 132* 34		-7	227 201 134* 16	-9	138*	-114	5 2	0	164 165 680 -636		-3	103* 95	23	0 4	1 2	21*	-33		-é	69* -76 67* 9
	-10	145* -87 307 -248		-8	176 -158	10 1 0	140	-157		-1 2	352 321 106* ~33		4	103*	50		3	50 224	206		-7 -8	285 298 69 * 3 9
'	-1	703 -657		10 -10	144* -5 138* -9	-2	138* 204	-40 205		3	112* -19 615 626		-ś	520E	630 120		67	128	-218	,	10 10	68* -5
	-3 5	124* -42 143* 164	4	1 0	550 -603 174 -167	-3	134* 143*	81 71		4	118* -135 105* 28		-67	126*	-47 246		89	65* 121	-1	'	-1	68* 47 67* -21
	-5	130* -11 144* -150		2	95* 9 212 722		142*	-16		-2	124* 86 110* -80 719 178		-7	138	-79		10	70* 102	-76		-2	69* 52 66* 56
	-/ -9	131* 81 144* 31		-3	101* 105 266 254	11 1 -3	134 # 133*	-64		-67	115* 87 135* 36		-0 -9	163* 176	-90	1 4	12	49	39		-3	69* -37 67* -111 70* 01
8	0 -1 Í	142* 18 137* 155		4	244 244 95* 10	-5	131*	-2 49		-7	121* -107 137* 27	3	3 0	163* 340	-385		-1	25*	-308		4	67 * -77 69 * 3
	-2	141* -33 274 -250		-5	102* -16	2	105	-91		-8	128* -0 135* 33		-1	215 318	-226		-23	266 54	263 -77		-5	68* 30 193 -189
	4	248 -231 147 17		-6,	109*54 133* 19	í, S	117	110 497		-10	137* -45 137* 114		-23	97+ 115*	186		- 3	400 260	-332		-7	216 207 68
	-68	249 222 220 -213		-7 8	117* 68 445 -445	67	99* 550	-589	62	-12	132* 6 182 187		-3	315 349	333 350		5	52* 120		8	4 0	126 110
	-8	196 146 338 -261		-8	125* 37 143* 9	8	232 198	-139 -231		-1	114#136 110# 132		-4	134*	-25		-6	502 306	471		-1	198 219 69 ° 18
9	0 1	125* -28 145* -159 490 -460		10	143* -146	11	186	183		-23	111* -5 123* 116		- 6 4	478	532		-7	62* 130	13		-2	69* 17 69* 30
	-3	450 417		-11	136* 15 144* -2	1 2 0	567E 67	-682 74		-34	112* 68 128 [±] -106		-7	154 * 157	-140		-8	66* 69*	48 26		-1	69* -106 70* 33
	-5	139 * 52 237 206	5	1 0	100 54 221 -227	-1 2	238	-296 1169 -907		45	115* 79 132* 146		-8	194 150	-204		-9 10	68* 69*	-68		-5	70* 60 69* ~55
	-7	249 289 145* 45 140* 1*		2	107* 70 115 116		95 64*	-90/ 73 -64		- 26-46	136* 89		-9 -10	165*	192		-10	70# 67#	20	9	4 -2	69* 64 69* 33
10	, -1	125* -46 144* -71		_3	113* 64 184 212	ر باب	758	676 675		-7	137* -49 128* -159	4	3 0	380	427	2	-12	65* 33*	-8 -0 -35			113 -125 68* -4
	-2	177 198 411 -384		4	147 146 105* 20	-5 -5	92* 93	116 96		8	354 276 201 -180		-1	209 121*	-232	•	-1	117	-103 119		-6 -7	67* 67 65* 8
	4	131* 35		-5	126 -53 330 283	-6 -6	430	398		-9 -10	136* 65 138* 90		-2	112*	-106 127		-2	105	83 -85		8	165 167

-

Table 2. Fractional atomic coordinates with their standard deviations

	x	$10^4 \sigma(x)$	у	$10^4 \sigma(y)$	z	$10^4\sigma(z)$	
$\mathbf{C}(1)$	0.3818	4	0.6895	8	0.1503	3	
C(2)	0.5469	5	0.3037	9	0.3911	4	
<u>où</u>	0.3866	13	0.8086	21	0.2403	9	
$\tilde{O}(2)$	0.3539	12	0.7916	· 21	0.0533	10	
$\tilde{O}(3)$	0.2847	15	0.5603	19	0.1493	14	
Q(4)	0.5023	13	0.6110	18	0.1556	12	
Õ(5)	0.5764	13	0.1911	20	0.4844	11	
Ō(6)	0.4278	15	0.3859	20	0.3910	13	
O(7)	0.5383	14	0.1864	23	0.3014	12	
O(8)	0.6416	13	0.4265	22	0.3906	12	
N(1)	0.1883	15	0.6663	23	0.3615	11	
N(2)	0.8715	12	0.3280	29	0.1068	12	
C(1)	0.1016	20	0.7075	38	0.4410	16	
C(2)	0.7744	22	0.3547	38	0.1766	18	

The two independent N-C distances in the methylammonium ions are 1.54 and 1.51 Å. These values are somewhat larger than the expected normal single-bond lengths between carbon and quaternary nitrogen atoms: 1.49, 1.50 and 1.51 Å in spermine phosphate (Iitaka & Huse, 1965), 1.47 Å in tetramethylammonium perchlorate (McCullough, 1964), 1.47 Å in monomethylammonium chloride (Hughes & Lipscomb, 1946), 1.51 Å in monomethylammonium alum (Fletcher & Steeple, 1964); but the difference seems not to be significant considering their standard deviations.

The shortest distances among the nitrogen atoms of the methylammonium ions and oxygen atoms of ClO_4 tetrahedra are listed in Table 6. The directions of the N-H...O bonds cannot be deduced simply, but it

Table 3. Anisotropic thermal parameters

 $\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right].$ (σ) applies to the rightmost digit of the quantity in question.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cl(1)	0.0063 (6)	0.0161 (16)	0.0058 (4)	0.0012 (8)	0.0002 (3)	-0.0010(7)
Cl(2)	0.0060 (5)	0.0217 (16)	0.0050 (4)	0.0005 (9)	-0.0004(3)	0.0006 (8)
O(Ì)	0.0131 (17)	0.0223 (45)	0.0047 (10)	-0.0007 (21)	-0.0006(10)	-0.0030 (17)
O(2)	0.0130 (16)	0.0370 (48)	0.0028 (10)	-0.0004(22)	0.0001 (10)	0.0053 (19)
O(3)	0.0124 (19)	0.0170 (44)	0.0117 (15)	-0.0043(25)	-0.0012(14)	-0.0015(20)
O(4)	0.0098 (18)	0.0199 (43)	0.0103 (15)	0.0019 (19)	0.0009 (14)	-0.0039(18)
O(5)	0.0102 (16)	0.0272 (40)	0.0083 (13)	0.0003 (21)	-0.0002(11)	0.0025 (22)
O(6)	0.0093 (16)	0.0272 (49)	0.0154 (16)	0.0058 (22)	0.0011 (13)	0.0017 (22)
O(7)	0.0152 (19)	0.0330 (49)	0.0060 (14)	0.0027 (26)	0.0002 (13)	-0.0038(25)
O(8)	0.0072 (19)	0.0467 (57)	0.0085 (13)	-0.0035(27)	0.0000 (13)	-0.0001(19)
N(1)	0.0117 (19)	0.0238 (50)	0.0031 (10)	-0·0025 (31)	0.0019 (10)	0.0030 (22)
N(2)	0.0058 (16)	0.0502 (56)	0.0055 (12)	-0.0052 (29)	-0.0001(11)	-0.0008(25)
C(1)	0.0085 (22)	0.0660 (88)	0.0058 (16)	0.0068 (36)	. 0.0006 (14)	-0.0060(32)
C(2)	0.0106 (22)	0.0415 (77)	0.0110 (22)	0.0032 (36)	0.0065 (17)	0.0009 (30)

Table 4. Bond lengths with standard deviations

(I) x, y, z	
(II) $1-x, 1-y, -z$	
(III) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$	2
(IV) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + \frac{1}{2} $	- <i>Z</i>
(V) $\frac{3}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2}$	<i>z</i>
Cl(1)(I) - O(1)(I)	1∙47±0∙01 Å
- O(2)(I)	1.45 0.01
-O(3)(I)	1.43 0.02
-O(4)(1)	1.40 0.01
N(1)(I) - C(1)(I)	1.54 ± 0.02

- O(8)(I) $1.38 \quad 0.02$ N(2)(I) - C(2)(I) 1.51 ± 0.02 seems likely from stereochemical considerations

- O(6)(I)

- O(7)(I)

Table 5. Bond angles in ClO_4 tetrahedra and their standard deviations

O(1) (I) – $Cl(1)$ (I) – $O(2)$ (I)	$108.2 \pm 0.9^{\circ}$
- O(3) (I)	110.5 0.8
- O(4) (I)	109.9 0.8
O(2) (I) - Cl(1) (I) - O(3) (I)	110.1 0.8
– O(4) (I)	107.6 0.8
O(3) (I) - Cl(1) (I) - O(4) (I)	110.5 0.9
O(5) (I) - Cl(2) (I) - O(6) (I)	$108 \cdot 1 \pm 0 \cdot 8$
– O(7) (I)	104.9 0.9
– O(8) (I)	111.8 0.8
O(6) (I) – $Cl(2)$ (I) – $O(7)$ (I)	111.2 0.9
– O(8) (I)	110.3 1.0
O(7) (I) – $Cl(2)$ (I) – $O(8)$ (I)	110.6 0.9

seems likely from stereochemical considerations that there are bifurcated hydrogen bonds in the following manner:

 1.46 ± 0.01 Å

0.02

1.41 0.02

1.45

The resultant system of hydrogen bonding is rather complex.

Table 6. N–O distances less than 3.5 Å							
N(1) (I) – O(1) (I)	3∙06 Å	N(2) (I) – O(1) (V)	2·91 Å				
– O(1) (VII)	3.08	– O(2) (II)	2.97				
– O(2) (VII)	3.14	– O(5) (IV)	2.93				
– O(3) (VI)	3.04	– O(5) (III)	3.11				
- O(5) (IX)	3.06	– O(7) (III)	3.07				
– O(7) (VI)	2.86	- O(8) (V)	3.08				
-O(3)(I)	3.20	- O(3) (II)	3.49				
- O(6) (I)	3.29	- O(6) (IV)	3.38				
- O(8) (IX)	3.41						

The interatomic distances less than 3.5 Å among methyl carbon atoms and the neighbours oxygen atoms are listed in Table 7. These distances appear to be normal, although C(1)(I) shows five contacts [with O(2)(VII), O(2)(VIII), O(8)(IX), O(7)(VI) and O(3)(VI)] and C(2)(I) two contacts [with O(2)(II) and O(7)(III)], which are slightly less than the sum of the van der Waals radii for a methyl group and oxygen, *i.e.* 3.4 Å. The environments of the two non-equivalent CH₃NH⁺₃ ions are shown in Fig.2. Each of them is surrounded by twelve oxygen atoms at distances less than 3.5 Å.

Fig. 1. Projection of the structure along the b axis.

Fig.2. The environments of the two non-equivalent $[NH_3CH_3]^+$ ions projected along the b axis. Distances in Å.

Table 7. Distances less than 3.5 Å between methyl carbon atoms and neighbouring atoms

C(1) (I) - O(2) (VII)	3∙22 Å	C(2) (I) – $O(2)$ (II)	3∙20 Å
– O(2) (VIII)	3.24	– O(4) (V)	3.42
– O(3) (VI)	3.27	– O(4) (I)	3.45
– O(4) (VI)	3.43	– O(7) (III)	3.20
– O(4) (VIII)	3.44	– O(7) (I)	3.48
– O(5) (IX)	3.44	– O(8) (I)	3.38
– O(7) (VI)	3.18		
-O(8)(IX)	3.29		

References

Albano, V., Bellon, P. L., POMPA, F. & Scatturin, V. (1963). *Ric. Sci.* 3A, 1067.

Coulter, C. L., GANTZEL, P. K. & McCullough, J. D. (1963). Acta Cryst. 16, 676.

- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, p.32. Oxford: Pergamon Press.
- FLETCHER, R. O. W. & STEEPLE, H. (1964). Acta Cryst. 17, 290.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- Hughes, E. W. & Lipscomb, W. N. (1946). J. Amer. Chem. Soc. 68, 1970.
- IITAKA, Y. & HUSE, Y. (1965). Acta Cryst. 18, 110.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- McCullough, J. D. (1964). Acta Cryst. 17, 1067.
- OKAYA, Y., AHMED, M. S., PEPINSKY, R. & VAND, V. (1957). (1957). Z. Kristallogr. 109, p. 367.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- STEWART, J. M. (1964). Technical Report TR-64-6, Univ. of Maryland Computer Science Center.
- TRUTER, M. R. (1961). Acta Cryst. 14, 318.
- TRUTER, M. R., CRUICKSHANK, D. W. J. & JEFFREY, G. A. (1960). Acta Cryst. 13, 855.

Acta Cryst. (1968). B24, 504

A New Method of Locating Heavy Atoms Bound to Protein Crystals

BY THOMAS A. STEITZ*

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

(Received 5 May 1967 and in revised form 28 July 1967)

It is shown that heavy atoms bound isomorphously to protein crystals can be located by using a direct method (Sayre's equation) to phase X-ray diffraction reflections in centrosymmetric projections. This method has been tested successfully with three derivatives of carboxypeptidase A, one of which contains four heavy atoms per protein molecule. Quite possibly several heavy atoms can be located in this manner with greater ease and assurance than by difference Patterson methods alone and thus the method may be especially useful in the X-ray study of proteins larger than 125,000 molecular weight, where binding of more than one or two heavy atoms will probably be both common and necessary.

Multiple isomorphous replacement phasing of X-ray diffraction data is the method which has proven most useful for determining protein structures. Its application requires the preparation of several isomorphous heavy atom derivatives of the native protein and the determination of the positions of these heavy atoms in the derivative crystals. The difference Patterson synthesis (Green, Ingram & Perutz, 1954), which is used to locate heavy atoms when no estimate of the protein phases is available, is quite adequate if only one or two heavy atoms are bound per asymmetric unit. However, by this method the location of larger numbers of heavy atoms becomes increasingly difficult.

It is shown here that a direct phase determination using Sayre's equation may be applied to reflections in centrosymmetric zones to locate heavy atoms bound isomorphously to protein crystals. The method has been successfully tested with three heavy atom derivatives of carboxypeptidase A_{α} (CPA_{α}), one of which contains eight mercury atoms per unit cell (four per molecule), and hence may prove to be a useful and powerful alternative to the difference Patterson syntheses for locating large numbers of heavy atoms.

The method

Sayre's (1952) equation expresses a relationship between the signs (phases) of certain structure factors for centrosymmetric structures of non-overlapping atoms:

$$s(F_{\mathbf{h}}) = s \sum_{\mathbf{k}} (F_{\mathbf{k}}F_{\mathbf{h}-\mathbf{k}}),$$

where s() means 'sign of' and F_h , F_k and F_{h-k} are the structure factors of reflections h(=hkl), k, and h-k. Using this equation, and assuming the signs of a few structure factors, the signs of other structure factors can be predicted and these in turn can be used to pre-

^{*} Present address: Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, England.